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Abstract—Studying human motor control has received in-
creased attention during the past decades. Both the design and
control of robotic artifacts may benefit from observation of
human behavior. In this paper a novel method for capturing
the dynamic behavior of the human hand is presented. The
low dimensional kinematics of the human hand, including the
wrist, and the low dimensional representation of the muscular
activations were correlated through a linear time invariant (LTI)
state space model. A linear output regulation controller was used
in order to drive a simulated hand and the resulting trajectories
were compared with the experimentally captured trajectories.

I. INTRODUCTION

The development of robotic hands that resemble the human
hand in terms of kinematic similarity and dexterity along with
dynamically smooth behavior has been extensively pursued
e.g. [1], [2], [3], [4]. The use of such hands can prove very
useful in a wide repertoire of tasks, including: neuro-prosthetic
devices, entertainment robots, robots that operate in hazardous
environments etc. Therefore, it is of great importance to design
controllers that are capable of driving these hands in such a
way that the resulting movements will be as close as possible
to the movements conducted by humans. Thus, studying
human motor control can inspire the design of appropriate
controllers.

One of the most important hypotheses regarding the control
of the human hand is the notion of synergies. Synergies
have been proposed as a way of describing the underlying
mechanism responsible for the coordination of human hand
movements. Experimental evidence indicates that the motion
coordination of the fingers is characterized by co-variation
patterns that reduce the number of independent degrees of
freedom (DoF) to be controlled. Principal component analysis
(PCA) can be applied on a dataset containing the captured
kinematics of the human hand, during grasping tasks, so as
for the initial data to be projected to a low dimensional space
characterized by a number of elemental control variables, [5],
[6]. Based on the aforementioned notion of synergies several

control laws have been proposed [7], [8], [9]. In [7], an op-
timization algorithm, expressed on the low dimensional space
spanned by a selected number of principal components, was
formulated so as to drive a robotic hand to predefined contact
locations on an object. The authors in [8], investigated the
extent to which a hand with many DoFs can exploit postural
synergies in order to control force and motion of the grasped
object. In [9], the concept of synergies, called principal motion
directions for the particular case, is used in order to reduce
the dimension of the search space in which a probabilistic
roadmap planner is defined. Finally, in [10], Filippidis et al.
proposed a method for constructing Navigation Function (NF)
controllers from experimental trajectories projected on the
synergy space. Several other researchers have attempted to
model human inter-joint coordination based on probabilistic
techniques, [11], [12]. However, in none of the above studies
the dynamics of motion have been taken into account.

Apart from postural synergies recent studies have proven
the existence of a similar synergistic actuation of the human
muscles responsible for controlling the movement of the hand,
[13], [14], [15]. In most of these studies EMG signals are used
in order to train models that reconstruct human hand motion
based on muscular activation and focus on teleoperation sce-
narios.

In the present paper we propose a novel method for in-
corporating the dynamic behavior of the human hand, as
it can be expressed through surface electromyography, in a
closed loop control scheme responsible for driving a simulated
hand during reach to grasp movements. Human hand motion,
including the wrist, and muscular activations from a pre-
defined set of muscles during reach to grasp movements have
been recorded. PCA has been applied on both the kinematics
of the human hand and EMG signals. The number of the
principal components (PCs) was chosen so as to meet certain
criteria regarding the proposed control methodology. In order
to correlate muscular activations with kinematics a linear time
invariant (LTT) state-space model has been trained, in a similar



fashion as in [16]. Finally, a state feedback controller with
output regulation is used for driving the simulated hand. The
rest of the paper is organized as follows: in section II the
experimental setup, the techniques used for data analysis and
the design of the corresponding control law are presented.
The experimental validation of the proposed methodology is
discussed in section III. Finally, section IV concludes the

paper.
II. MATERIALS AND METHODS
A. Experimental setup

There is no doubt that the human hand possesses
unsurpassed dexterity and this feature can be perceived as
being closely related to its structural complexity. Several
models describing its kinematic structure have been proposed
[17], [18]. In this paper it is modeled as being consisted of
5 fingers; the thumb, the index, the middle, the ring and the
pinky, that are placed on a body, the palm.

The role of synergies during reach to grasp movements
was identified by the following experiment; a subject is
seated on a chair, while his trunk is holded to the chair by
means of elastic straps, so as to restrain body movements.
His hand was placed at the top of the table with the palm
facing downwards. Objects of varying shape and size were
placed on the surface of a table at a higher point than the
starting hand position. The user is instructed to move his
arm in order to reach and grasp the object. For each trial the
starting position of the hand and the position of the object
were kept the same. The grasped objects are listed in Table
I. The experimental setup is presented in Fig. 1.

TABLE I
TABLE OF GRASPED OBJECTS

Number Object Task
1 Tall Glass Grasp from side to drink
2 Tall Glass Grasp from side to move
3 Tall Glass Grasp from top to move
4 Tall Glass Grasp from side and rotate
5 Bottle Grasp from side to move
6 Mouse Grasp to slide
7 Mouse Grasp to left click
8 Mouse Grasp to right click
9 Cup Grasp from side to drink
10 Cup Grasp from side to move
11 Cup Grasp from top to move
12 Cup Grasp from side and rotate
13 Hammer Grasp to use
14 Ashtray Grasp to move
15 Pen Grasp to move
16 Pen Grasp to write
17 Jar Lid Grasp from top remove the lid
18 Jar Lid Grasp from side to move
19 Screwdriver Grasp to use
20 Book Grasp to look at it
21 Mobile Grasp to look at it
22 Scissor Grasp to move
23 Scissor Grasp to use
24 Stapler Grasp to use

Fig. 1. A human subject before the initiation of a reach to grasp movement.
The two position trackers are placed on the user’s wrist joint and on the object.
The human hand kinematics are captured with CyberGlove 2 motion capture
glove and the IMU is placed inside the object.

In order to capture the human hand kinematics a motion
capture glove and more specifically the CyberGlove 2 was
used. It possesses 22 sensors; three flexion-extension sensors
per finger, four adduction-abduction sensors, a palm-arch
sensor, and sensors to measure wrist flexion and abduction.
Each sensor’s resolution is less than one degree, while 0.6
% of maximum nonlinearity is observed over the full joint
range. This glove is interfaced with the PC responsible for
data recording through a serial RS-232 port and offers data
rates up to 90 samples/sec. The motion of the wrist in space
has been recorded through the use of a magnetic position
tracking system (Isotrak II, Polhemus Inc.). The particular
system is equipped with two position trackers and a reference
system, with respect to which, the 3D position and orientation
of the trackers are provided. In order to capture the motion
of the wrist with respect to the position of the object, one
position tracker was placed on the user’s wrist while the other
one was properly attached on the object to be grasped. The
reference system was placed on a solid surface above the
user’s shoulder. The position tracking system was connected
with a PC through serial communication interface (RS-232)
and provided measurements at the frequency of 60 Hz. The
myo-electric activation of the muscles responsible for wrist
and finger movements was captured through the Bagnoli-16
EMG system (Delsys Inc). We recorded the activation of the
following 8 muscles: extensor carpi ulnaris, extensor carpi
radialis, flexor carpi ulnaris, flexor carpi radialis, extensor dig-
itorum, flexor digitorum superficialis, abductor policis longus,
extensor policis brevis and flexor policis brevis. As far as the
EMG signals are concerned they were band-pass filtered (20-
450 Hz), sampled at 1 kHz, full-wave rectified and at last
low-pass filtered (Butterworth, fourth order, 8 Hz). Using an
antialiasing finite-impulse response filter (low pass, order: 24,
cutoff frequency: 100 Hz), the measurements from all sensors
were resampled at a frequency of 1 kHz to be consistent with
the muscle activation sampling frequency. Finally, an Inertial
Measurement Unit (IMU) was attached on most of the objects,
for the detection of the timing of initial contact of the hand
with the object.

B. Extracting kinematic and muscular synergies

In order to extract the kinematic synergies of the human
hand PCA has been applied on the captured trajectories. The
central idea of PCA is to reduce the dimensionality of a data



set consisting of a large number of interrelated variables, while
retaining as much as possible of the variance present in the
data set. This is achieved by transforming the original dataset
to a new set of variables, the principal components (PCs),
which are uncorrelated, and which are ordered so that the
first few retain most of the variance present in all of the
original variables. For more details regarding PCA the reader
should refer to [19]. Let the joint space of the human hand be
described by a vector ¢ € R??. Let Q € R**?2 be a matrix
containing the measurements provided by the CyberGlove,
where k is the number of data samples. After subtracting
from each measurement the overall mean of the data set, PCA
can be applied and the principal components, describing the
synergies, may be extracted. The principal components appear
as columns in the matrix P € R?2*?2 in order of decreasing
component variance. Let the number of principal components,
chosen to describe the corresponding space, be denoted by n,
then the matrix W € R?2*™ may be defined. The principal
component transformation of the joint space data can now be
defined as:

o=W'q (D

where 0 € R™', denotes the low dimensional representation
of the human hand kinematics. In the case that the number of
principal components is chosen to be equal to the dimension of
the high-dimensional space and since the principal components
are orthogonal then the following equality holds:

WWT =Jc R22><22 (2)

As a result for the case of ny = 22, that is to have
the same number of PCs as the dimension of the original
high dimensional data the transformation between the low-
dimensional space and the high-dimensional space is given
by:

q=Wo + Gmean 3)

where ¢ean € R?? denotes the mean of the original data set.
Let the configuration space of the human hand be denoted
by C C R?? and the space spanned by the selected PCs
be denoted by S C R™. Then, matrix W € R#2xm g
a linear map from the low-dimensional synergy space to
the high-dimensional configuration space of the human hand,
W S — C. For the case of n; < 22, eq. (2) is not
valid anymore, however, eq. (3) may still be used if principal
components are perceived as vector fields. A vector field is
a smooth map from configurations ¢ to velocities ¢. The
velocities defined over the synergy space belong to the tangent
bundle of the manifold defined by the principal components.
Thus, ¢ = W and for small displacements 6g = Wéo. So,
locally ¢ = Wo + ¢mean- In the right side of the last equation
the mean configuration from the whole dataset has been added.
A similar explanation to the above may be found in [20]. For
the case of the muscular activations let m € R® be a vector
containing the measurements provided by the bio-amplifier for
a specific time instant and M € R**® be a matrix containing
the measurements from all the trajectories conducted by the
user, where k& denotes the number of data samples. In a
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Fig. 2. The cumulative variance for the principal components extracted from
the EMG signals.
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Fig. 3. The cumulative variance for the principal components extracted from
the hand kinematics.

similar fashion as in the case of human hand kinematics
the muscle synergies may be extracted by application of
PCA. The principal component transformation of the muscular
activations can now be defined as:

£=Vim )

where £ € R™?, denotes the low dimensional representation of
the EMG signals and V' € R8*"2 defined over the muscular
activations is the equivalent of the matrix W € R?2X™
defined over the human hand joint space. The cumulative
variance for the principal components extracted from the EMG
signals and the hand kinematics are depicted in Fig.2 and Fig.3
respectively. Five principal components were used for defining
the low-dimensional representation of the hand data, based
on the total variance they could explain (95%). Regarding
EMG data, although 3 principal components could represent
a large percentage of the data variance (95%), we decided
to include 5 so as to match the number of the principal
components describing the low dimensional kinematic space,
which can facilitate the grasp planner designed later in this
paper. The selected PCs defined over the low dimensional
space of the muscular activations account for almost 98% of
the total variance.

C. Relating muscle synergies with kinematic synergies

Most of the synergy-based controllers presented in previous
research, have benefited from postural synergies either as a
means of reducing dimensionality or as a feature ensuring



that human like postures will be derived from the proposed
controllers, while, neglecting the dynamics of motion. In this
paper, we attempt to blend synergies defined over the low-
dimensional space of the muscular activations with the syn-
ergies defined over the low-dimensional space of the human
hand kinematics. EMG signals contain information regarding
the dynamics of the movement thus we believe that a better
representation of the mechanism that is responsible for driving
the human hand can be extracted by the correlation of these
two, ostensibly uncorrelated, low-dimensional spaces. From
a physiological point of view, a model that would describe
the function of skeletal muscles in actuating the human joints
would be generally a complex one. Using such a model for
controlling a robot hand would be problematic. For this reason,
we can adopt a more flexible decoding model in which we
introduce hidden, or latent variables we call . These hidden
variables can model the unobserved, intrinsic system states,
and thus facilitate the correlation between the low-dimensional
muscular activations ¢ and the low-dimensional kinematics
o. Since this paper focuses on driving an animated human
hand and our ultimate goal is to control anthropomorphic
robot hands we chose to use an LTI state-space model since
dynamical systems described by this type of models can be
easily controlled. Mapping of the muscular activation to low
dimensional joint space can be achieved by defining a discrete
time invariant state space model:

Tpy1 = Axy + By
O — C;Ek

®)

where x, € R™ is the vector of hidden states at time
instant kKT, k = 1,2,...,n, where T is the sampling period,
A € R™™ is a matrix that describes the dynamic behavior
of the hidden state, B € R™ ™ is the input matrix that
relates muscle activations to the state vector, C € R™*" is
the output matrix that represents the relationship between the
joint space kinematics and the state vector, o € R™ is the
vector of low dimensional hand kinematics and £ € R™ is the
vector of low dimensional EMG signals. Model training entails
the estimation of the matrices A, B and C. This is achieved
through the application of an iterative search algorithm so
as to minimize a quadratic prediction error criterion. Several
models of order up to 12 were trained and a model of
order 8 was finally chosen. As it is evident from Fig. 4 a
model of order 8 efficiently captures the dynamics of the
relationship between the muscular activations and the low-
dimensional representation of hand motion during grasping. In
other words, it essentially describes the relationship between a
kinematic-synergy space and the motor synergies, as described
in the muscular co-activation space. The introduction of the
dynamics of the hidden state vector x introduces a dynamic
aspect in the grasping synergies, which can provide significant
insight in the way muscular activations and postural hand
synergies are related. The latter provides an extension of the
hand synergy space beyond the static representation studied in
the literature so far, and can provide a significant insight on
the human hand motor control.
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Fig. 4. The mean and standard deviation values of the correlation coefficients
for both testing (red lines) and training data (blue lines).

D. Bio-inspired control of the human hand

Once the LTT state space model describing the dynamics of
the human hand is trained, a muscle level activation controller
is built. We intend to construct a controller that given a
desired configuration, in the low-dimensional space, will drive
a simulated hand to it’s final destination following trajectories
that will be similar to those conducted by the human subject.
The proposed control law is a state feedback controller with
output regulation. It consists of two parts; the state feedback
part, which is responsible for shaping the response of the
simulated system, and an input gain that ensures a zero steady-
state error. The proposed controller is presented below:

T = Az + Bu

e ©)

where 2 € R® is the system’s state, A € R8*8, B € R®*%,
C € R°®, y € R® is the low dimensional kinematic
representation and v € R® is the control input. It should be
noted that eq. 6 is the continuous time equivalent of the model
presented by eq. 5. The closed loop output regulation is of the
form:

u=—-Kx+ Goy 7

where o4 € R® is the desired configuration and K € R5*8
is a gain matrix, appropriately selected so as to ensure that
the poles (sI — A+ BK) of the closed loop system are
effectively placed in order to guarantee stability, i.e. they lie
in the left half plane, and appropriate system response. Finally
the input gain matrix G' € R°*5 is given by:

G=— C(AfBK)’lB} ®)

The block diagram of the proposed control law is depicted in
Fig.5.

III. RESULTS

In order to test the effectiveness of the proposed method-
ology, grasping simulations were conducted. For a captured
trajectory the final hand configuration was extracted, it was
transformed to a low dimensional configuration, and it was



Fig. 5. The block of the proposed control law. The desired configuration is
denoted by o, € R5.

used as an input to the controller. It should be noted that the
pole placement was conducted once and the same control law
was used in all the simulation results. The initial states of
the system x (0) were estimated in order for the simulated
hand to start its motion from an initial posture resembling
the initial posture of the subject. The simulated hand may
be perceived as a virtual robotic hand that has the same
dimensions and the same number of motors as the human
hand. The resulting trajectory representing the motion of the
robotic hand in low dimensional space is then transformed
back to a high dimensional kinematic trajectory through the
transformation defined in eq. 3. In Fig. 6 the low dimensional
kinematics of the human subject during one grasping trial and
the low dimensional kinematics that resulted from the con-
troller previously described are depicted. From these figures
it is evident that a zero steady-state error has been achieved.
However, this was dictated by the fact that an input gain matrix
was introduced in the proposed control law. In addition to
the fact that a zero steady-state error is achieved, there is a
resemblance between the resulted and the original trajectories,
originated from the bio-inspired dynamics of the state space
model that was used. To the best of our knowledge there is
a lack in the relevant literature of a metric responsible for
defining the level of anthropomorphism that is achieved by an
automatically generated trajectory. To this end an additional
evaluation of the generated trajectories was introduced by
visually comparing the resulting discrete postures with the
discrete postures followed by the human subject during a reach
to grasp movement. This was achieved by using the ”Grasplt!”
simulation environment [21]. For two of the tasks conducted
by the human subject, grasp a bottle from side and grasp
a glass from top, the captured joint space trajectories were
projected to the low dimensional space. The final configuration
of the human hand, i.e. the configuration of the hand at the
time instant that the first contact is detected through the IMU
system, was used as the reference input of the controller. The
generated trajectories were projected to the high dimensional
space and they were used as inputs to the ”Grasplt” simulator
so as to drive a simulated hand. For the same objects the
captured trajectories were also used as inputs to the simulator.
Snapshots from both the human hand while executing the task,
and the hand controlled by the aforementioned controller, are
shown in Fig.7, Fig.8, Fig.9 and Fig.10. It should be noted
that in these simulations the movement of the human hand is
synchronized with the captured movement of the human arm.
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Fig. 6. The experimental trajectory, captured during reach to grasp a bottle
is depicted on the top left figure, this trial is the fifth one depicted in Table 1.
On the bottom left figure the equivalent trajectory generated by the controller
is depicted. Equivalently the experimental trajectory, captured during reach to
grasp a glass from top is depicted on the top right figure, this trial is the third
one depicted in Table I. On the bottom right figure the equivalent trajectory
generated by the controller is depicted.
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Fig. 7. On the top figure snapshots of the trajectory conducted by the human
during grasping a glass are depicted. On the bottom figure snapshots of the
simulated hand following the trajectory generated by the proposed control
law during grasping a glass are depicted. In this figure the side view of the
grasping experiments is depicted.

IV. CONCLUSIONS AND FUTURE DIRECTIONS

The dexterity of the human hand, its mechanics and the
coordination of the fingers have always acted as inspiration
for the design and control of robotic hands. One of the most
important hypothesis regarding the motor control of the human
hand is the notion of synergies. Recently, synergies have
received increased attention among the robotics community.
This attention is attributed to the fact that synergies not only
describe efficiently the coordination of the human fingers but
they also introduce a reduction in the high dimensionality of
the human hand joint space. Most of the previous studies in
this field have benefited from a static representation of the
hand synergy space.

In this paper a novel method for capturing the dynamic
behavior of the human hand is presented. The low dimensional
kinematics of the human hand, including the wrist, and the
low dimensional representation of the muscular activations
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Fig. 8. On the top figure snapshots of the trajectory conducted by the human
during grasping a glass are depicted. On the bottom figure snapshots of the
simulated hand following the trajectory generated by the proposed control
law during grasping a glass are depicted. In this figure the top view of the
grasping experiments is depicted.
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Fig. 9. On the top figure snapshots of the trajectory conducted by the human
during grasping a bottle are depicted. On the bottom figure snapshots of the
simulated hand following the trajectory generated by the proposed control

law during grasping a bottle are depicted. In this figure the side view of the
grasping experiments is depicted.
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Fig. 10. On the top figure snapshots of the trajectory conducted by the human
during grasping a bottle are depicted. On the bottom figure snapshots of the
simulated hand following the trajectory generated by the proposed control
law during grasping a bottle are depicted. In this figure the top view of the
grasping experiments is depicted.

were correlated through a LTI state space model. A linear
output regulation controller was used in order to drive a sim-
ulated hand and the resulting trajectories were compared with
the experimentally captured trajectories. In addition to that,
simulations using the ”Grasplt” simulation environment were
conducted so as to verify the effectiveness of the proposed
methodology.

Future work involves the development of a methodology
responsible for mapping the generated trajectories to robotic
hands that are different for the human hand, i.e. they have dif-
ferent geometric characteristics and possess a different number
of actuators. Additionally, the possibility of placing the poles
of the closed loop system following optimality principles will
be investigated.
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